Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400187, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639212

RESUMO

Understanding the mechanisms of drug action in malarial parasites is crucial for the development of new drugs to combat infection and to counteract drug resistance. Proteomics is a widely used approach to study host-pathogen systems and to identify drug protein targets. Plasmodione is an antiplasmodial early-lead drug exerting potent activities against young asexual and sexual blood stages in vitro with low toxicity to host cells. To elucidate its molecular mechanisms, an affinity-based protein profiling (AfBPP) approach was applied to yeast and P. falciparum proteomes. New (pro-)AfBPP probes based on the 3-benz(o)yl-6-fluoro-menadione scaffold were synthesized. With optimized conditions of both photoaffinity labeling and click reaction steps, the AfBPP protocol was then applied to a yeast proteome, yielding 11 putative drug-protein targets. Among these, we found four proteins associated with oxidoreductase activities, the hypothesized type of targets for plasmodione and its metabolites, and other proteins associated with the mitochondria. In Plasmodium parasites, the MS analysis revealed 44 potential plasmodione targets that need to be validated in further studies. Finally, the localization of a 3-benzyl-6-fluoromenadione AfBPP probe was studied in the subcellular structures of the parasite at the trophozoite stage.

2.
Chem Sci ; 15(4): 1248-1259, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38274067

RESUMO

A series of heptamethine-oxonol dyes featuring different heterocyclic end groups were designed with the aim to explore structure-property relationships in π-extended coupled polymethines. These dyes can be stabilised under three different protonation states, affording dicationic derivatives with an aromatic core, cationic heptamethines, and zwitterionic bis-cyanine forms. The variation of the end groups directly impacts the absorption and emission properties and mostly controls reaching either a colourless neutral dispirocyclic species or near-infrared zwitterions. The acidochromic switching between the three states involves profound electronic rearrangements leading to notable shifts of their optical properties that were investigated using a parallel experiment-theory approach, providing a comprehensive description of these unique systems.

3.
J Org Chem ; 89(4): 2104-2126, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37267444

RESUMO

This work describes the reactivity and properties of fluorinated derivatives (F-PD and F-PDO) of plasmodione (PD) and its metabolite, the plasmodione oxide (PDO). Introduction of a fluorine atom on the 2-methyl group markedly alters the redox properties of the 1,4-naphthoquinone electrophore, making the compound highly oxidizing and particularly photoreactive. A fruitful set of analytical methods (electrochemistry, absorption and emission spectrophotometry, and HRMS-ESI) have been used to highlight the products resulting from UV photoirradiation in the absence or presence of selected nucleophiles. With F-PDO and in the absence of nucleophile, photoreduction generates a highly reactive ortho-quinone methide (o-QM) capable of leading to the formation of a homodimer. In the presence of thiol nucleophiles such as ß-mercaptoethanol, which was used as a model, o-QMs are continuously regenerated in sequential photoredox reactions generating mono- or disulfanylation products as well as various unreported sulfanyl products. Besides, these photoreduced adducts derived from F-PDO are characterized by a bright yellowish emission due to an excited-state intramolecular proton transfer (ESIPT) process between the dihydronapthoquinone and benzoyl units. In order to evidence the possibility of an intramolecular coupling of the o-QM intermediate, a synthetic route to the corresponding anthrones is described. Tautomerization of the targeted anthrones occurs and affords highly fluorescent stable hydroxyl-anthraquinones. Although probable to explain the intense visible fluorescence emission also observed in tobacco BY-2 cells used as a cellular model, these coupling products have never been observed during the photochemical reactions performed in this study. Our data suggest that the observed ESIPT-induced fluorescence most likely corresponds to the generation of alkylated products through reduction species, as demonstrated with the ß-mercaptoethanol model. In conclusion, F-PDO thus acts as a novel (pro)-fluorescent probe for monitoring redox processes and protein alkylation in living cells.


Assuntos
Indolquinonas , Vitamina K 3/análogos & derivados , Mercaptoetanol , Indolquinonas/química , Antraquinonas
4.
Chemistry ; 29(68): e202302353, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37688503

RESUMO

A second generation of cyanine-based near-infrared photocatalysts has been developed to accelerate organic transformations. Cyanines were prepared and fully characterized prior to evaluation of their photocatalytic activities. Catalyst efficiency was determined by using two model oxidation and reduction reactions. For the aza-Henry reaction, cyanines bearing an amino group on the heptamethine chain led to the best results. For trifluoromethylation, the stability of the photocatalyst was found to be the key parameter for efficient and rapid conversion.

5.
Org Lett ; 25(21): 3886-3891, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37216490

RESUMO

The straightforward access to N- or C-substituted dinitro-tetraamino-phenazines (P1-P5) is enabled in oxidative conditions via formation of two intermolecular C-N bonds from accessible 5-nitrobenzene-1,2,4-triamine precursors. The photophysical studies revealed green absorbing and orange-red emitting dyes, with enhanced fluorescence in the solid state. Further reduction of the nitro functions led to the isolation of a benzoquinonediimine-fused quinoxaline (P6), which undergoes diprotonation to form a dicationic coupled trimethine dye absorbing beyond 800 nm.

6.
Chembiochem ; 24(12): e202300139, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36820499

RESUMO

Photodynamic therapy (PDT) is a photochemistry-based medical treatment combining light at a specific wavelength and a photosensitizer (PS) in the presence of oxygen. Application of PDT as a conventional treatment is limited and clearly the approval in clinics of new PS is challenging. The selective accumulation of the PS in the targeted malignant cells is of paramount importance to reduce the side effects that are typical of the current worldwide approved PS. Here we report a new series of aniline- and iodine-substituted BODIPY derivatives (1-3) as promising lysosome-targeting and pH-responsive theranostic PS, which displayed a significant in vitro light-induced cytotoxicity, efficient imaging properties and low dark toxicity (for 2 and 3). These compounds were obtained in few reproducible synthetic steps and good yields. Spectroscopic and electrochemical measurements along with computational calculations confirmed the quenching of the emissive properties of the PS, while both fluorescence and 1 O2 emission were obtained only under acidic conditions inducing amine protonation. The pKa values and pH-dependent emissive properties of 1-3 being established, their cellular uptake and activation in the lysosomal vesicles (pH≈4-5) were confirmed by their co-localization with the commercial LysoTracker deep red and light-induced cytotoxicity (IC50 between 0.16 and 0.06 µM) against HeLa cancer cells.


Assuntos
Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Células HeLa , Lisossomos , Concentração de Íons de Hidrogênio
7.
Chem Commun (Camb) ; 58(99): 13759-13762, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36416727

RESUMO

Herein, unprecedented uses of squaraine derivatives as new organic near-infrared photocatalysts are reported. These efficient molecular tools are able to promote oxidation and reduction for organic transformations through photocatalytic conditions. A mechanistic investigation is performed to distinguish between competitive Single Electron Transfer and Energy Transfer pathways.


Assuntos
Oxirredução
8.
Eur J Med Chem ; 243: 114735, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36122550

RESUMO

A series of ferrocenyl-containing γ-hydroxy-γ-lactam tetramates were prepared in 2-3 steps through ring opening-ring closure (RORC) process of γ-ylidene-tetronate derivatives in the presence of ferrocenyl alkylamines. The compounds were screened in vitro for their antiplasmodial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (W2) clones of P. falciparum, displaying activity in the range of 0.12-100 µM, with generally good resistance index. The most active ferrocene in these series exhibited IC50 equal to 0.09 µM (3D7) and 0.12 µM (W2). The low cytotoxicity of the ferrocenyl-containing γ-hydroxy-γ-lactam tetramates against Human Umbilical Vein Endothelial (HUVEC) cell line demonstrated selective antiparasitic activity. The redox properties of these ferrocene-derived tetramates were studied and physico-biochemical studies evidenced that these derivatives can exert potent antimalarial activities via a mechanism distinct from ferroquine.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Metalocenos/farmacologia , Antimaláricos/química , Plasmodium falciparum , Lactamas/farmacologia , Lactamas/química , Relação Estrutura-Atividade , Malária Falciparum/tratamento farmacológico , Cloroquina/uso terapêutico
9.
Nat Commun ; 13(1): 3904, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798727

RESUMO

Ionic covalent organic frameworks (iCOFs) are new examples of porous materials and have shown great potential for various applications. When functionalized with suitable emission sites, guest uptake via the ionic moieties of iCOFs can cause a significant change in luminescence, making them excellent candidates for chemosensors. In here, we present a luminescence sensor in the form of an ionic covalent organic framework (TGH+•PD) composed of guanidinium and phenanthroline moieties for the detection of ammonia and primary aliphatic amines. TGH+•PD exhibits strong emission enhancement in the presence of selective primary amines due to the suppression of intramolecular charge transfer (ICT) with an ultra-low detection limit of 1.2 × 10‒7 M for ammonia. The presence of ionic moieties makes TGH+•PD highly dispersible in water, while deprotonation of the guanidinium moiety by amines restricts its ICT process and signals their presence by enhanced fluorescence emission. The presence of ordered pore walls introduces size selectivity among analyte molecules, and the iCOF has been successfully used to monitor meat products that release biogenic amine vapors upon decomposition due to improper storage.


Assuntos
Estruturas Metalorgânicas , Amônia , Aminas Biogênicas , Cátions , Fluorescência , Guanidina
10.
Cell Host Microbe ; 29(12): 1774-1787.e9, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34863371

RESUMO

Intraerythrocytic malaria parasites proliferate bounded by a parasitophorous vacuolar membrane (PVM). The PVM contains nutrient permeable channels (NPCs) conductive to small molecules, but their relevance for parasite growth for individual metabolites is largely untested. Here we show that growth-relevant levels of major carbon and energy sources pass through the NPCs. Moreover, we find that NPCs are a gate for several antimalarial drugs, highlighting their permeability properties as a critical factor for drug design. Looking into NPC-dependent amino acid transport, we find that amino acid shortage is a reason for the fitness cost in artemisinin-resistant (ARTR) parasites and provide evidence that NPC upregulation to increase amino acids acquisition is a mechanism of ARTR parasites in vitro and in human infections to compensate this fitness cost. Hence, the NPCs are important for nutrient and drug access and reveal amino acid deprivation as a critical constraint in ARTR parasites.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Malária , Nutrientes , Parasitos , Vacúolos , Aminoácidos , Animais , Desenho de Fármacos , Exercício Físico , Humanos , Regulação para Cima
11.
Chemistry ; 27(64): 15922-15927, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34478209

RESUMO

The development of methodologies to control on demand and reversibly supramolecular transformations from self-assembled metalla-structures requires the rational design of architectures able to answer to an applied stimulus. While solvent or concentration changes, light exposure or addition of a chemical have been largely explored to provide these transformations, the case of pH sensitive materials is less described. Herein, we report the first example of a pH-triggered dissociation of a coordination-driven self-assembled interlocked molecular link. It incorporates a pH sensitive benzobisimidazole-based ligand that can be selectively protonated on its bisimidazole moieties. This generates intermolecular electrostatic repulsions that reduces drastically the stability of the interlocked structure, leading to its dissociation without any sign of protonation of the pyridine moieties involved in the coordination bonds. Importantly, the dissociation process is reversible through addition of a base.


Assuntos
Ligantes , Concentração de Íons de Hidrogênio , Solventes , Eletricidade Estática
12.
Metabolites ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564386

RESUMO

Vismione H (VH) is a fluorescent prenylated anthranoid produced by plants from the Hypericaceae family, with antiprotozoal activities against malaria and leishmaniosis. Little is known about its biosynthesis and metabolism in plants or its mode of action against parasites. When VH is isolated from Psorospermum glaberrimum, it is rapidly converted into madagascine anthrone and anthraquinone, which are characterized by markedly different fluorescent properties. To locate the fluorescence of VH in living plant cells and discriminate it from that of the other metabolites, an original strategy combining spectral imaging (SImaging), confocal microscopy, and non-targeted metabolomics using mass spectrometry, was developed. Besides VH, structurally related molecules including madagascine (Mad), emodin (Emo), quinizarin (Qui), as well as lapachol (Lap) and fraxetin (Fra) were analyzed. This strategy readily allowed a spatiotemporal characterization and discrimination of spectral fingerprints from anthranoid-derived metabolites and related complexes with cations and proteins. In addition, our study validates the ability of plant cells to metabolize VH into madagascine anthrone, anthraquinones and unexpected metabolites. These results pave the way for new hypotheses on anthranoid metabolism in plants.

13.
J Org Chem ; 86(15): 10055-10066, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34264092

RESUMO

3-Benzylmenadiones were obtained in good yield by using a blue-light-induced photoredox process in the presence of Fe(III), oxygen, and γ-terpinene acting as a hydrogen-atom transfer agent. This methodology is compatible with a wide variety of diversely substituted 1,4-naphthoquinones as well as various cheap, readily available benzyl bromides with excellent functional group tolerance. The benzylation mechanism was investigated and supports a three-step radical cascade with the key involvement of the photogenerated superoxide anion radical.


Assuntos
Compostos Férricos , Quinonas , Catálise , Hidrogênio , Oxirredução
14.
JACS Au ; 1(5): 669-689, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34056636

RESUMO

Plasmodione (PD) is a potent antimalarial redox-active drug acting at low nM range concentrations on different malaria parasite stages. In this study, in order to determine the precise PD protein interactome in parasites, we developed a class of (pro-)activity-based protein profiling probes (ABPP) as precursors of photoreactive benzophenone-like probes based on the skeleton of PD metabolites (PDO) generated in a cascade of redox reactions. Under UV-photoirradiation, we clearly demonstrate that benzylic oxidation of 3-benzylmenadione 11 produces the 3-benzoylmenadione probe 7, allowing investigation of the proof-of-concept of the ABPP strategy with 3-benzoylmenadiones 7-10. The synthesized 3-benzoylmenadiones, probe 7 with an alkyne group or probe 9 with -NO2 in para position of the benzoyl chain, were found to be the most efficient photoreactive and clickable probes. In the presence of various H-donor partners, the UV-irradiation of the photoreactive ABPP probes generates different adducts, the expected "benzophenone-like" adducts (pathway 1) in addition to "benzoxanthone" adducts (via two other pathways, 2 and 3). Using both human and Plasmodium falciparum glutathione reductases, three protein ligand binding sites were identified following photolabeling with probes 7 or 9. The photoreduction of 3-benzoylmenadiones (PDO and probe 9) promoting the formation of both the corresponding benzoxanthone and the derived enone could be replaced by the glutathione reductase-catalyzed reduction step. In particular, the electrophilic character of the benzoxanthone was evidenced by its ability to alkylate heme, as a relevant event supporting the antimalarial mode of action of PD. This work provides a proof-of-principle that (pro-)ABPP probes can generate benzophenone-like metabolites enabling optimized activity-based protein profiling conditions that will be instrumental to analyze the interactome of early lead antiplasmodial 3-benzylmenadiones displaying an original and innovative mode of action.

15.
ACS Infect Dis ; 7(7): 1996-2012, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33855850

RESUMO

Plasmodione (PD) is a potent antimalarial redox-active 3-benzyl-menadione acting at low nanomolar range concentrations on different malaria parasite stages. The specific bioactivation of PD was proposed to occur via a cascade of redox reactions starting from one-electron reduction and then benzylic oxidation, leading to the generation of several key metabolites including corresponding benzylic alcohol (PD-bzol, for PD benzhydrol) and 3-benzoylmenadione (PDO, for PD oxide). In this study, we showed that the benzylic oxidation of PD is closely related to the formation of a benzylic semiquinone radical, which can be produced under two conditions: UV photoirradiation or catalysis by Plasmodium falciparum apicoplast ferredoxin-NADP+ reductase (PfFNR) redox cycling in the presence of oxygen and the parent PD. Electrochemical properties of both PD metabolites were investigated in DMSO and in water. The single-electron reduction potential values of PD, PD-bzol, PDO, and a series of 3-benzoylmenadiones were determined according to ascorbate oxidation kinetics. These compounds possess enhanced reactivity toward PfFNR as compared with model quinones. Optimal conditions were set up to obtain the best conversion of the starting PD to the corresponding metabolites. UV irradiation of PD in isopropanol under positive oxygen pressure led to an isolated yield of 31% PDO through the transient semiquinone species formed in a cascade of reactions. In the presence of PfFNR, PDO and PD-bzol could be observed during long lasting redox cycling of PD continuously fueled by NADPH regenerated by an enzymatic system. Finally, we observed and quantified the effect of PD on the production of oxidative stress in the apicoplast of transgenic 3D7[Api-roGFP2-hGrx1]P. falciparum parasites by using the described genetically encoded glutathione redox sensor hGrx1-roGFP2 methodology. The observed fast reactive oxygen species (ROS) pulse released in the apicoplast is proposed to be mediated by PD redox cycling catalyzed by PfFNR.


Assuntos
Antimaláricos , Preparações Farmacêuticas , Catálise , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , NADP/metabolismo , Oxirredução , Plasmodium falciparum/metabolismo , Vitamina K 3/análogos & derivados
16.
Inorg Chem ; 60(4): 2634-2648, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33496592

RESUMO

Herein we present the preparation of two novel cyclam-based macrocycles (te1pyp and cb-te1pyp), bearing phosphonate-appended pyridine side arms for the coordination of copper(II) ions in the context of 64Cu PET imaging. The two ligands have been prepared through conventional protection-alkylation sequences on cyclam, and their coordination properties have been thoroughly investigated. The corresponding copper complexes have been fully characterized in the solid state (X-ray diffraction analysis) and in solution (EPR and UV-vis spectroscopies). Potentiometric studies combined with spectrometry have also allowed us to determine their thermodynamic stability constants, confirming their high affinity for copper(II) cations. The kinetic inertness of the complexes has been verified by acid-assisted dissociation experiments, enabling their use in 64Cu-PET imaging in mice for the first time. Indeed, the two ligands could be quantitatively radiolabeled under mild conditions, and the resulting 64Cu complexes have demonstrated excellent stability in serum. PET imaging demonstrated a set of features emerging from the combination of picolinates and phosphonate units: high stability in vivo, fast clearance from the body via renal elimination, and most interestingly, very low fixation in the liver. This is in contrast with what was observed for monopicolinate cyclam (te1pa), which had a non-negligible accumulation in the liver, owing probably to its different charge and lipophilicity. These results thus pave the way for the use of such phosphonated pyridine chelators for in vivo 64Cu-PET imaging.


Assuntos
Quelantes/química , Radioisótopos de Cobre/química , Compostos Heterocíclicos/química , Ácidos Fosforosos/química , Tomografia por Emissão de Pósitrons/métodos , Piridinas/química , Animais , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Ligantes , Camundongos , Camundongos Endogâmicos BALB C
17.
RSC Adv ; 11(47): 29543-29554, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479532

RESUMO

Two calix[4]arene systems, C234+ and C244+ - where 2 corresponds to the number of viologen units and 3-4 corresponds to the number of carbon atoms connecting the viologen units to the macrocyclic core - have been synthesized and led to the formation of [3]pseudorotaxanes when combined with either CB[7] or CB[8]. The [3]pseudorotaxanes spontaneously dissociate upon reduction of the bipyridinium units as the result of intramolecular dimerization of the two face-to-face viologen radical cations. CB[7] and CB[8]-based [2]pseudorotaxanes containing monomeric viologen guest model compounds, MC32+ and MC4+, do not undergo decomplexation and dimerization following electrochemical reduction of their bipyridinium units.

18.
Org Lett ; 22(20): 7997-8001, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32991186

RESUMO

The transamination of oxoaminobenzoquinonemonoimine (BQI derivatives), an unconventional zwitterionic quinone, allows isolation of a series of compounds featuring electron-donating aryl auxochromes. The substitution has a very strong impact on the electrochemical and optical features, which is rationalized by theoretical calculations. Protonation and alkylation of the BQIs toward the corresponding cations lead to surprising red-shifts of the absorption, especially in the instance of the most electron-rich dyes that exhibit panchromatic absorption spanning up to the near-infrared (NIR) region, a remarkable achievement for such small molecules.

19.
Inorg Chem ; 59(14): 10311-10327, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32639724

RESUMO

Ligands L1 and L2, respectively based on a cyclam and a cross-bridged cyclam scaffold functionalized at N1 and N8 by 6-phosphonic-2-methylene pyridyl groups, are described. While complexation of lanthanide (Ln) cations with L2 was not possible, a family of complexes has been prepared with L1, of the general formulae [LnL1H2]Cl (Ln3+ = Lu, Tb, Yb) or [LnL1H] (Ln3+ = Eu). The solution, structural, potentiometric, and photophysical data for these novel ligands and their complexes have been investigated, including a solid-state study by X-ray diffraction (L1, L2, and [EuL1H]), 1H NMR complexation investigations (Lu3+), as well as UV-vis absorption and luminescence spectroscopy in water and D2O (pH ≈ 7). L1 forms 1:1 metal-ligand stoichiometric octadentate complexes in solution. Importantly, the pyridyl phosphonate functions are capable of simultaneous chelation to the metal center and of interaction with a second metal center. 1H NMR (Lu3+) and spectrophotometric titrations of the isolated [TbL1]- complex by EuCl3 salts demonstrated the formation of high-order (hetero)polymetallic species in aqueous solution (H2O, pH = 7). Global analysis of the luminescence titration experiment points to the formation of 4:1, 3:1, and 3:2 [TbL1]/Eu heteropolynuclear assemblies, exhibiting a strong preference to forming [TbL1]3Eu2 at increased europium concentrations, with energy transfer occurring between the kinetically inert terbium complex and added europium cations.

20.
J Colloid Interface Sci ; 579: 140-151, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32580084

RESUMO

In this work, the design of a new generation of functionalized large pore silica nanoparticles is addressed for the specific removal of iron from biological environments. Herein, mesoporous silica with a large pore stellate morphology, denoted STMS, were grafted with the highly specific iron chelating agent desferrioxamine B, DFoB. The challenge of this work was the step by step elaboration of the nanoplatform and the evaluation of its chelating efficiency and selectivity. Hence, the controlled covalent grafting of DFoB specific iron chelator, was successfully achieved ensuring a high grafting rate of chelating ligand of 730 nmol·mg-1 (i.e., 0.85 ligand·nm-2). Furthermore, these highly chelating STMS silica were able to capture iron(III) stabilized with nitrilotriacetic acid (NTA) in solution at physiological pH with a fast kinetics (less than 30 min). For a stoichiometry 0.85:1 (FeNTA : DFoB), the STMS-DFoB nanoparticles allowed reaching capture capacity and efficiency of 480 nmolFe3+/mg SiO2 and 78%, respectively. Regarding the selectivity features of the removal process, studies were performed with two different media composed of various metal ions: (i) an equimolar solution of various metal cations and (ii) a Barth's buffer mimicking the brain solution composition. In both cases, the chelating STMS-DFoB showed a high selectivity for iron versus other ions at the same (Al3+) or different valency (Na+, K+…). Finally, this work paves the way for new nanosystems for metal overload treatments as well as for future highly chelating nanoplatforms that can be used at the interface between depollution and nanomedecine.


Assuntos
Nanopartículas , Dióxido de Silício , Doxorrubicina , Ferro , Quelantes de Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...